Problem 1.13

(a) Show that if a is a constant and $b(x)$ is a function, then

$$
y^{\prime \prime}+\frac{b^{\prime}(x)}{b(x)} y^{\prime}-\frac{a^{2}}{[b(x)]^{2}} y=0
$$

has a pair of linearly independent solutions which are reciprocals; find them.
(b) $y(x)$ and $[y(x)]^{2}$ are both solutions of $y^{\prime \prime}+p(x) y^{\prime}+2 y=0$. Find $y(x)$.

Solution

Part (a)

If y and y^{-1} are both solutions, then that means they both satisfy the ODE. We thus have two equations to work with.

$$
\begin{aligned}
& y^{\prime \prime}+\frac{b^{\prime}(x)}{b(x)} y^{\prime}-\frac{a^{2}}{[b(x)]^{2}} y=0 \\
& \left(y^{-1}\right)^{\prime \prime}+\frac{b^{\prime}(x)}{b(x)}\left(y^{-1}\right)^{\prime}-\frac{a^{2}}{[b(x)]^{2}} y^{-1}=0
\end{aligned}
$$

Solve the first equation for $y^{\prime \prime}$ and evaluate the derivatives in the second equation.

$$
\begin{aligned}
& y^{\prime \prime}=\frac{a^{2}}{[b(x)]^{2}} y-\frac{b^{\prime}(x)}{b(x)} y^{\prime} \\
& \frac{2\left(y^{\prime}\right)^{2}}{y^{3}}-\frac{y^{\prime \prime}}{y^{2}}+\frac{b^{\prime}(x)}{b(x)}\left(-\frac{y^{\prime}}{y^{2}}\right)-\frac{a^{2}}{[b(x)]^{2}} \frac{1}{y}=0
\end{aligned}
$$

Substitute the expression for $y^{\prime \prime}$ into the second equation to get an ODE that is first-order for y.

$$
\frac{2\left(y^{\prime}\right)^{2}}{y^{3}}-\frac{1}{y^{2}}\left[\frac{a^{2}}{[b(x)]^{2}} y-\frac{b^{\prime}(x)}{b(x)} y^{\prime}\right]+\frac{b^{\prime}(x)}{b(x)}\left(-\frac{y^{\prime}}{y^{2}}\right)-\frac{a^{2}}{[b(x)]^{2}} \frac{1}{y}=0
$$

Expand the left side.

$$
\frac{2\left(y^{\prime}\right)^{2}}{y^{3}}-\frac{a^{2}}{[b(x)]^{2}} \frac{1}{y}+\frac{b^{\prime}(x)}{b(x)} \frac{y^{\prime}}{y^{2}}-\frac{b^{\prime}(x)}{b(x)} \frac{y^{\prime}}{y^{2}}-\frac{a^{2}}{[b(x)]^{2}} \frac{1}{y}=0
$$

Combine like-terms.

$$
\frac{2\left(y^{\prime}\right)^{2}}{y^{3}}-\frac{2 a^{2}}{[b(x)]^{2}} \frac{1}{y}=0
$$

Multiply both sides by y^{3} and divide both sides by 2 .

$$
\left(y^{\prime}\right)^{2}-\frac{a^{2}}{[b(x)]^{2}} y^{2}=0
$$

The left side is a difference of squares, so it can be factored.

$$
\left[\frac{d y}{d x}+\frac{a}{b(x)} y\right]\left[\frac{d y}{d x}-\frac{a}{b(x)} y\right]=0
$$

By the zero product theorem, we have

$$
\frac{d y}{d x}+\frac{a}{b(x)} y=0 \quad \text { or } \quad \frac{d y}{d x}-\frac{a}{b(x)} y .
$$

Both of these ODEs for y can be solved with separation of variables.

$$
\frac{d y}{d x}=-\frac{a}{b(x)} y \quad \frac{d y}{d x}=\frac{a}{b(x)} y
$$

Separate variables.

$$
\frac{d y}{y}=-\frac{a}{b(x)} d x \quad \frac{d y}{y}=\frac{a}{b(x)} d x
$$

Integrate both sides.

$$
\ln |y|=-\int^{x} \frac{a}{b(s)} d s+C_{1} \quad \ln |y|=\int^{x} \frac{a}{b(s)} d s+C_{2}
$$

Exponentiate both sides.

$$
|y|=e^{-\int^{x} \frac{a}{b(s)} d s} e^{C_{1}} \quad|y|=e^{\int^{x} \frac{a}{b(s)} d s} e^{C_{2}}
$$

Introduce \pm on the right side to remove the absolute value sign on the left.

$$
y(x)= \pm e^{C_{1}} e^{-\int^{x} \frac{a}{b(s)} d s} \quad y(x)= \pm e^{C_{2}} e^{\int^{x} \frac{a}{b(s)} d s}
$$

Use new arbitrary constants.

$$
y(x)=A e^{-\int^{x} \frac{a}{b(s)} d s} \quad y(x)=B e^{\int^{x} \frac{a}{b(s)} d s}
$$

Therefore, the two linearly independent reciprocal solutions to the ODE are

$$
y_{1}(x)=\frac{1}{e^{\int^{x} \frac{a}{b(s)} d s}} \quad \text { and } \quad y_{2}(x)=e^{\int^{x} \frac{a}{b(s)} d s}
$$

Part (b)

If $y(x)$ and $[y(x)]^{2}$ are both solutions, then that means they both satisfy the ODE. We thus have two equations to work with.

$$
\begin{aligned}
& y^{\prime \prime}+p(x) y^{\prime}+2 y=0 \\
& \left(y^{2}\right)^{\prime \prime}+p(x)\left(y^{2}\right)^{\prime}+2 y^{2}=0
\end{aligned}
$$

Solve the first equation for $y^{\prime \prime}$ and evaluate the derivatives in the second equation.

$$
\begin{aligned}
& y^{\prime \prime}=-p(x) y^{\prime}-2 y \\
& 2\left(y^{\prime}\right)^{2}+2 y y^{\prime \prime}+p(x) \cdot 2 y y^{\prime}+2 y^{2}=0
\end{aligned}
$$

Substitute the expression for $y^{\prime \prime}$ into the second equation to get an ODE that is first-order for y.

$$
2\left(y^{\prime}\right)^{2}+2 y\left[-p(x) y^{\prime}-2 y\right]+p(x) \cdot 2 y y^{\prime}+2 y^{2}=0
$$

Expand the left side.

$$
2\left(y^{\prime}\right)^{2}-2 p(x) y y^{\prime}-4 y^{2}+2 p(x) y y^{\prime}+2 y^{2}=0
$$

Combine like-terms.

$$
2\left(y^{\prime}\right)^{2}-2 y^{2}=0
$$

Divide both sides by 2 .

$$
\left(y^{\prime}\right)^{2}-y^{2}=0
$$

The left side is a difference of squares, so it can be factored.

$$
\left(\frac{d y}{d x}+y\right)\left(\frac{d y}{d x}-y\right)=0
$$

We have the following from the zero product theorem.

$$
\frac{d y}{d x}+y=0 \quad \text { or } \quad \frac{d y}{d x}-y=0
$$

Both of these are first-order ODEs we can solve with separation of variables.

$$
\frac{d y}{d x}=-y \quad \frac{d y}{d x}=y
$$

Separate variables.

$$
\frac{d y}{y}=-d x \quad \frac{d y}{y}=d x
$$

Integrate both sides.

$$
\ln |y|=-x+C_{1} \quad \ln |y|=x+C_{2}
$$

Exponentiate both sides.

$$
|y|=e^{-x} e^{C_{1}} \quad|y|=e^{x} e^{C_{2}}
$$

Introduce \pm on the right side to remove the absolute value sign on the left.

$$
y(x)= \pm e^{C_{1}} e^{-x} \quad y(x)= \pm e^{C_{2}} e^{x}
$$

Therefore, we have

$$
y(x)=C e^{ \pm x}
$$

where C is an arbitrary constant.
The general solution to the ODE, $y^{\prime \prime}+p(x) y^{\prime}+2 y=0$, is quite complicated, but if y and y^{2} both happen to be solutions, then $p(x)$ has to equal ∓ 3. To demonstrate this point, note that the general solution to $y^{\prime \prime}+3 y^{\prime}+2 y=0$ is $y(x)=A e^{-x}+B e^{-2 x}$, and the general solution to $y^{\prime \prime}-3 y^{\prime}+2 y=0$ is $y(x)=A e^{x}+B e^{2 x}$.

