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Problem 1.13

(a) Show that if a is a constant and b(x) is a function, then

y′′ +
b′(x)

b(x)
y′ − a2

[b(x)]2
y = 0

has a pair of linearly independent solutions which are reciprocals; find them.

(b) y(x) and [y(x)]2 are both solutions of y′′ + p(x)y′ + 2y = 0. Find y(x).

Solution

Part (a)

If y and y−1 are both solutions, then that means they both satisfy the ODE. We thus have two
equations to work with.

y′′ +
b′(x)

b(x)
y′ − a2

[b(x)]2
y = 0

(y−1)′′ +
b′(x)

b(x)
(y−1)′ − a2

[b(x)]2
y−1 = 0

Solve the first equation for y′′ and evaluate the derivatives in the second equation.

y′′ =
a2

[b(x)]2
y − b′(x)

b(x)
y′

2(y′)2

y3
− y′′

y2
+

b′(x)

b(x)

(
− y′

y2

)
− a2

[b(x)]2
1

y
= 0

Substitute the expression for y′′ into the second equation to get an ODE that is first-order for y.

2(y′)2

y3
− 1

y2

[
a2

[b(x)]2
y − b′(x)

b(x)
y′
]
+

b′(x)

b(x)

(
− y′

y2

)
− a2

[b(x)]2
1

y
= 0

Expand the left side.

2(y′)2

y3
− a2

[b(x)]2
1

y
+
�
�

�
�b′(x)

b(x)

y′

y2
−
�

�
�
�b′(x)

b(x)

y′

y2
− a2

[b(x)]2
1

y
= 0

Combine like-terms.
2(y′)2

y3
− 2a2

[b(x)]2
1

y
= 0

Multiply both sides by y3 and divide both sides by 2.

(y′)2 − a2

[b(x)]2
y2 = 0

The left side is a difference of squares, so it can be factored.[
dy

dx
+

a

b(x)
y

] [
dy

dx
− a

b(x)
y

]
= 0
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By the zero product theorem, we have

dy

dx
+

a

b(x)
y = 0 or

dy

dx
− a

b(x)
y.

Both of these ODEs for y can be solved with separation of variables.

dy

dx
= − a

b(x)
y

dy

dx
=

a

b(x)
y

Separate variables.

dy

y
= − a

b(x)
dx

dy

y
=

a

b(x)
dx

Integrate both sides.

ln |y| = −
ˆ x a

b(s)
ds+ C1 ln |y| =

ˆ x a

b(s)
ds+ C2

Exponentiate both sides.

|y| = e
−
´ x a

b(s)
ds
eC1 |y| = e

´ x a
b(s)

ds
eC2

Introduce ± on the right side to remove the absolute value sign on the left.

y(x) = ±eC1e
−
´ x a

b(s)
ds

y(x) = ±eC2e
´ x a

b(s)
ds

Use new arbitrary constants.

y(x) = Ae
−
´ x a

b(s)
ds

y(x) = Be
´ x a

b(s)
ds

Therefore, the two linearly independent reciprocal solutions to the ODE are

y1(x) =
1

e
´ x a

b(s)
ds

and y2(x) = e
´ x a

b(s)
ds
.

Part (b)

If y(x) and [y(x)]2 are both solutions, then that means they both satisfy the ODE. We thus have
two equations to work with.

y′′ + p(x)y′ + 2y = 0

(y2)′′ + p(x)(y2)′ + 2y2 = 0

Solve the first equation for y′′ and evaluate the derivatives in the second equation.

y′′ = −p(x)y′ − 2y

2(y′)2 + 2yy′′ + p(x) · 2yy′ + 2y2 = 0

Substitute the expression for y′′ into the second equation to get an ODE that is first-order for y.

2(y′)2 + 2y[−p(x)y′ − 2y] + p(x) · 2yy′ + 2y2 = 0
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Expand the left side.
2(y′)2 −�����2p(x)yy′ − 4y2 +�����2p(x)yy′ + 2y2 = 0

Combine like-terms.
2(y′)2 − 2y2 = 0

Divide both sides by 2.
(y′)2 − y2 = 0

The left side is a difference of squares, so it can be factored.(
dy

dx
+ y

)(
dy

dx
− y

)
= 0

We have the following from the zero product theorem.

dy

dx
+ y = 0 or

dy

dx
− y = 0

Both of these are first-order ODEs we can solve with separation of variables.

dy

dx
= −y dy

dx
= y

Separate variables.

dy

y
= −dx dy

y
= dx

Integrate both sides.

ln |y| = −x+ C1 ln |y| = x+ C2

Exponentiate both sides.

|y| = e−xeC1 |y| = exeC2

Introduce ± on the right side to remove the absolute value sign on the left.

y(x) = ±eC1e−x y(x) = ±eC2ex

Therefore, we have
y(x) = Ce±x,

where C is an arbitrary constant.

The general solution to the ODE, y′′ + p(x)y′ + 2y = 0, is quite complicated, but if y and y2 both
happen to be solutions, then p(x) has to equal ∓3. To demonstrate this point, note that the
general solution to y′′ + 3y′ + 2y = 0 is y(x) = Ae−x +Be−2x, and the general solution to
y′′ − 3y′ + 2y = 0 is y(x) = Aex +Be2x.
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